Studying Brain Circuit Function with Dynamic Causal Modeling for Optogenetic fMRI
نویسندگان
چکیده
منابع مشابه
Studying Brain Circuit Function with Dynamic Causal Modeling for Optogenetic fMRI
Defining the large-scale behavior of brain circuits with cell type specificity is a major goal of neuroscience. However, neuronal circuit diagrams typically draw upon anatomical and electrophysiological measurements acquired in isolation. Consequently, a dynamic and cell-type-specific connectivity map has never been constructed from simultaneous measurements across the brain. Here, we introduce...
متن کاملConnectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI☆
Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. H...
متن کاملAssessing parameter identifiability for dynamic causal modeling of fMRI data
Deterministic dynamic causal modeling (DCM) for fMRI data is a sophisticated approach to analyse effective connectivity in terms of directed interactions between brain regions of interest. To date it is difficult to know if acquired fMRI data will yield precise estimation of DCM parameters. Focusing on parameter identifiability, an important prerequisite for research questions on directed conne...
متن کاملTest-retest reliability of dynamic causal modeling for fMRI
Dynamic causal modeling (DCM) is a Bayesian framework for inferring effective connectivity among brain regions from neuroimaging data. While the validity of DCM has been investigated in various previous studies, the reliability of DCM parameter estimates across sessions has been examined less systematically. Here, we report results of a software comparison with regard to test-retest reliability...
متن کاملStudying the freely-behaving brain with fMRI
Given that the brain evolved to function in the real world then it seems reasonable to want to examine how it operates in that context. But of course the world is complex, as are the brain's responses to it, and MRI scanners are inherently restrictive environments. This combination of challenges makes the prospect of studying the freely-behaving brain with fMRI disconcerting to anyone sensible....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neuron
سال: 2017
ISSN: 0896-6273
DOI: 10.1016/j.neuron.2016.12.035